NATIONAL LEVEL SCIENCE TALENT SEARCH EXAMINATION (UPDATED)

CLASS - 11 (PCM)

Question Paper Code : UN499

KEY

1. D	2. A	3. D	4. A	5. B	6. C	7. B	8. B	9. D	10. B
11. C	12. A	13. A	14. C	15. B	16. A	17. C	18. A	19. B	20. C
21. D	22. D	23. C	24. B	25. C	26. B	27. B	28. D	29. A	30. D
31. A	32. C	33. D	34. B	35. D	36. D	37. B	38. D	39. C	40. A
41. A	42. B	43. D	44. C	45. C	46. A	47. D	48. D	49. B	50. B
51. B	52. B	53. B	54. C	55. A	56. D	57. A	58. D	59. B	60. C

EXPLANATIONS

MATHEMATICS

1: (D) $\left(\frac{8}{5}\right)^{1-x^{2}}>\left(\frac{5}{8}\right)^{6(1+x)}$

$$
\begin{aligned}
& 1-x^{2}>-6(1+x) \\
& \Rightarrow x^{2}-6 x-7<0 \Rightarrow x \in(-1,7)
\end{aligned}
$$

2. (A) (fofof) (-1) + (fofof) $(0)+($ fofof) (1)

$$
=-2+33-2=29 ; f(4 \sqrt{2})=32-3=29
$$

3. (D) $x y z=(p+q)\left(p \omega+q \omega^{2}\right)\left(p \omega^{2}+q \omega\right)$

$$
=p^{3}+q^{3}
$$

4. (A) $\frac{y}{1}=\frac{x^{2}-x+1}{x^{2}+x+1}$

$$
\begin{aligned}
& x^{2}-x+1=x^{2} y+x y+y \\
& (1-y) x^{2}+(-1-y) x+(1-y)=0 \\
& (1+y)^{2}-4(1-y)^{2}>0 \\
& 1+y^{2}+2 y-4\left(1+y^{2}-2 y\right)>0 \\
& 1+y^{2}+2 y-4-4 y^{2}+8 y \geq 0 \\
& -3 y^{2}+10 y-3 \geq 0 \\
& 3 y^{2}-10 y+3<0 \\
& 3 y^{2}-9 y-y+3<0 \\
& 3 y(y-3)-1(y-3) \leq 0 \\
& y \in\left[\frac{1}{3}, 3\right]
\end{aligned}
$$

$\therefore \quad$ Minimum value $=\frac{1}{3}$
05. (B) $30 \mathrm{c}_{2}-8 \mathrm{c}_{2}+1$

$$
\begin{aligned}
& =\frac{30 \times 29}{2}-\frac{8 \times 7}{2}+1 \\
& =15 \times 29-28+1 \\
& =435-28+1 \\
& =436-28 \\
& =408
\end{aligned}
$$

6.

(C) $\frac{1}{\mathrm{a}^{3}}\left[1+\frac{\mathrm{b}}{\mathrm{a}} x\right]^{-3}=\frac{1}{27}+\frac{x}{3}+\ldots$ \qquad
$\Rightarrow \frac{1}{\mathrm{a}^{3}}\left[1-\frac{3 \mathrm{~b}}{\mathrm{a}} x+\ldots ..\right]=\frac{1}{27}+\frac{x}{3}$
$\Rightarrow \frac{1}{a^{3}}=\frac{1}{27}=a=3$
$-\frac{3 \mathrm{~b}}{\mathrm{a}^{4}} x=\frac{x}{3}=-\frac{3 \mathrm{~b}}{27}=\frac{1}{3} \quad \mathrm{~b}=-9$
$\therefore(3,-9)$
07.
(B) $\frac{27 \tan ^{2} \theta+3 \cot ^{2} \theta}{2} \geq \sqrt{27 \tan ^{2} \theta \times 3 \cot ^{2} \theta}$
$[\because A M \geq G M]$
$\therefore \quad 27 \tan ^{2} \theta+3 \cot ^{2} \theta \geq 2 \times 9$
$\therefore \quad 27 \tan ^{2} \theta+3 \cot ^{2} \theta \geq 18$
$\therefore \quad$ Minimum value of $27 \tan ^{2} \theta+3 \cot ^{2} \theta=$ 18
08. (B) $\cos 36^{\circ}-\cos 72^{\circ}$

$$
=\frac{\sqrt{5}+1}{4}-\frac{\sqrt{5}-1}{4}=\frac{1}{2}
$$

9. (D) $(k, 2 k),(3 k, 3 k),(3,1)$ are collinear

$$
\Rightarrow K=\frac{-1}{3}
$$

Education of the line l is $y-1=\frac{1}{2}(x-3)$
$\Rightarrow-x-2 y-1=0$
Distance from origin is $\frac{1}{\sqrt{1+4}}=\frac{1}{\sqrt{5}}$
10. (B) Centroid of $\triangle A B C=$ Centroid of $\triangle D E F$
$\therefore \mathrm{G}\left(\frac{4}{3}, \frac{2}{3}, 0\right)$
11. (C) Focus $(a, 0)=(3,0) a=3$

Directrix $x+\mathrm{a}=0 \Rightarrow x+3=0$
$\therefore \quad$ Equation of parabola is $y^{2}=4 \mathrm{a} x=12 x$
12. (A) The y-coordinate of foci is zero
$\therefore \quad$ Major axis is on X -axis ae $=4$
Let, equation of ellipse be $\frac{x^{2}}{\mathrm{a}^{2}}+\frac{y^{2}}{\mathrm{~b}^{2}}=1$
$\left[\because b^{2}=a^{2}\left(1-e^{2}\right)=a^{2}-16\right]$
$\Rightarrow \frac{32}{a^{2}}+\frac{24}{a^{2}-16}=1$
$\Rightarrow 32 a^{2}-512+24 a^{2}=a^{2}\left(a^{2}-16\right)$
$\Rightarrow 56 a^{2}-512=a^{4}-16 a^{2}$
$\Rightarrow a^{4}-72 a^{2}+512=0$
$\Rightarrow a^{2}-64 a^{2}-8 a^{2}+512=0$
$\Rightarrow a^{2}\left(a^{2}-64\right)-8\left(a^{2}-64\right)=0$
$\Rightarrow\left(\mathrm{a}^{2}-8\right)\left(\mathrm{a}^{2}-64\right)=0$
$\Rightarrow a^{2}=64 \Rightarrow a=8 \quad\left(\because a^{2}=8\right.$ is not possible)
$\because \quad$ ae $=4 \Rightarrow 8 \times \mathrm{e}=4$
$\Rightarrow \mathrm{e}=\frac{1}{2}$
13. (A) The number of persons in a selection may be of the following types
(i) Man's relative (0 males +3 Females) + wife's relatives (3 Males +0 Females)
(ii) Man's relatives (1 male + 2 Females) + wife's relatives (2 males +1 Female)
(iii) Man's relatives (2 males + 1 Female) + wife's relatives (1 male +2 Females)
(iv) Man's relatives (3 males +0 Females) + wife's relatives (0 males +3 Females)
$\therefore \quad$ The required number of selections
$={ }^{3} \mathrm{C}_{0} \times{ }^{4} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{3} \times{ }^{3} \mathrm{C}_{0} \times{ }^{3} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{1} \times$ ${ }^{3} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{0} \times{ }^{4} \mathrm{C}_{0} \times{ }^{3} \mathrm{C}_{3}$
$=1 \times 4 \times 4 \times 1+3 \times 6 \times 6 \times 3+3 \times 4 \times 4$
$\times 3+1 \times 1 \times 1 \times 1$
$=16+324+144+1=485$
14. (C)

$$
\begin{aligned}
& \operatorname{Lt} \frac{f(x)-f(1)}{x-1}=f^{1}(x) \\
& f^{1}(1)=1\left(\frac{1}{1+1}\right)+\operatorname{Tan}^{-1}(x) \\
& =\frac{1}{2}+\frac{\pi}{4}=\frac{2+\pi}{4}
\end{aligned}
$$

15. (B) $\quad x y=(x+y)^{n}$

$$
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{x+y-\mathrm{n} x}{\mathrm{ny}-x-y}\right) \frac{y}{x}
$$

but given $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}$
$\frac{x+y-\mathrm{n} x}{\mathrm{ny}-x-y}=1 \Rightarrow \mathrm{n}=2$
16. (A) $B-A=B-(A \cap B)$

$$
\begin{aligned}
& P(B-A)=P(B)-P(A \cap B) \\
& P(B)=P(B-A)+P(A \cap B) \\
& =\frac{8}{25}+\frac{3}{25}=\frac{11}{25}
\end{aligned}
$$

17. (C) $n(S)={ }^{6} C_{3}=20, n(A)=2$
[In the hexagon $A B C D E F ; A C E, B D F$ are equilateral]
$\Rightarrow P(A)=\frac{2}{20}=\frac{1}{10}$
18. (A) $f(y)=\frac{1-y}{1+y}=\frac{1-\left(\frac{1-x}{1+x}\right)}{1+\left(\frac{1-x}{1+x}\right)}$
$(1-x)-(1-x)$
$=\frac{\frac{(1+x)}{(1+x)+(1-x)}}{\frac{(1+x)}{(1+x)}}=\frac{\not 1+x-\not x+x}{1+x+1-x}$
$\Rightarrow \frac{2 x}{2}=x$
19. (B) Let the numbers are a and b. Then, we have
$\frac{2 a b}{a+b}=-\frac{8}{5} a n d \sqrt{a b}=2$
$\Rightarrow \frac{2 \times 4}{a+b}=-\frac{8}{5}$
$\Rightarrow \mathrm{a}+\mathrm{b}=-5$
Now, (2a) $(2 b)=4 a b=16$
and $2 a+2 b=2(a+b)=2(-5)=-10$
$\therefore \quad$ Required quadratic equation is
$x^{2}+10 x+16=0$
20. (C) Given, $A B C D$ is a parallelogram with vertices
$A(4,4,-1), B(5,6,-1), C(6,5,1)$ and $\mathrm{D}(x, y, z)$.

We know that diagonals of parallelogram $A B C D$ bisects each other.
$\therefore \quad$ Mid-point of $A C=$ Mid-Point of BD

$$
\begin{gathered}
\Rightarrow\left(\frac{4+6}{2}, \frac{4+5}{2}, \frac{-1+1}{2}\right)=\left(\frac{x+5}{2}, \frac{y+6}{2}, \frac{z-1}{2}\right) \\
\Rightarrow\left(\frac{10}{2}, \frac{9}{2}, 0\right)=\left(\frac{x+5}{2}, \frac{y+6}{2}, \frac{z-1}{2}\right)
\end{gathered}
$$

On comparing both sides, we get
$\frac{x+5}{2}=\frac{10}{2}, \frac{y+6}{2}=\frac{9}{2}$ and $\frac{z-1}{2}=0$
$\Rightarrow x+5=10, y+6=9$ and $z-1=0$
$\Rightarrow x=10-5, y=9-6$ and $z=1$
$\Rightarrow x=5, y=3$ and $z=1$
Thus, $\mathrm{D}(x, y, z)=\mathrm{D}(5,3,1)$
21. (D) Given, $\mathrm{f}(x)=\sqrt{\log _{0.5} x!}$
$f(x)$ is defined when
$\log _{0.5} x!\geq 0$
$\Rightarrow x!\leq(0.5)^{\circ}$
$\Rightarrow x!\leq 1$
$\therefore x \in\{0,1\}$
22. (D) We have x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3} are in GP with the same common ratio.

Let r be the common ratio.
$\therefore x_{1}=x, x_{2}=x r$ and $x_{3}=x r^{2}$
Similarly, $y_{1}=y$
$y_{2}=y r$ and $y_{3}=y r^{2}$
\therefore Area of $\Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
$=\frac{1}{2}\left|\begin{array}{lll}x & y & 1 \\ x r & y r & 1 \\ x r^{2} & y r^{2} & 1\end{array}\right|$
$=\frac{1}{2} x y\left|\begin{array}{lll}1 & 1 & 1 \\ r & r & 1 \\ r^{2} & r^{2} & 1\end{array}\right|=\frac{1}{2} \times 0=0$
$\left[\because C_{1}, C_{2}\right.$ are identical]
$\therefore \quad$ The given points are collinear.
23. (C) Given, $y=\log _{2}\left(\log _{2} x\right)$

$$
\begin{gathered}
\Rightarrow \quad y=\log _{2}\left(\frac{\log x}{\log 2}\right) \quad\left[\because \log _{\mathrm{a}} \mathrm{~b}=\frac{\log \mathrm{b}}{\log \mathrm{a}}\right] \\
\Rightarrow y=\frac{\log \frac{\log x}{\log 2}}{\log 2} \\
\Rightarrow y=\frac{\log (\log x)-\log (\log 2)}{\log 2} \\
\\
{\left[\because \log \frac{\mathrm{a}}{\mathrm{~b}}=\log \mathrm{a}-\log \mathrm{b}\right]}
\end{gathered}
$$

$$
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\log 2}\left[\frac{1}{\log _{\mathrm{e}} x} \times \frac{1}{x}-0\right]=\frac{1}{\log 2 \cdot \log _{\mathrm{e}} x \cdot x}
$$

$$
=\frac{1}{\left(x \log _{e} x\right) \log _{e} 2}
$$

24. (B) We have,

$$
\begin{aligned}
& \quad \bar{Z}^{\frac{1}{3}}=\mathrm{a}+\mathrm{ib} \\
& \Rightarrow \bar{Z}=(\mathrm{a}+\mathrm{ib})^{3} \\
& \Rightarrow x-\mathrm{i} y=(\mathrm{a}+\mathrm{ib})^{3} \quad[\because \bar{z}=x-\mathrm{i} y] \\
& \Rightarrow x-\mathrm{i} y=\mathrm{a}^{3}+\mathrm{i}^{3} \mathrm{~b}^{3}+3 \mathrm{a}^{2}(\mathrm{ib})+3 \mathrm{a}\left(\mathrm{i}^{2} \mathrm{~b}^{2}\right) \\
& \Rightarrow x-\mathrm{i} y=\mathrm{a}^{3}-\mathrm{i} \mathrm{~b}^{3}+3 \mathrm{a}^{2} \mathrm{bi}-3 \mathrm{ab} \mathrm{~b}^{2} \\
& \Rightarrow x-\mathrm{i} y=\left(\mathrm{a}^{3}-3 \mathrm{ab}\right)+\mathrm{i}\left(3 \mathrm{a}^{2} \mathrm{~b}-\mathrm{b}^{3}\right) \\
& \Rightarrow x=\mathrm{a}^{3}-3 \mathrm{ab}^{2} \text { and } y=-3 \mathrm{a}^{2} \mathrm{~b}+\mathrm{b}^{3} \\
& \Rightarrow \frac{x}{\mathrm{a}}=\mathrm{a}^{2}-3 \mathrm{~b}^{2} \mathrm{and} \frac{y}{\mathrm{~b}}=-3 \mathrm{a}^{2}+\mathrm{b}^{2} \\
& \text { Now, } \frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}=\mathrm{a}^{2}-3 \mathrm{~b}^{2}-3 \mathrm{a}^{2}+\mathrm{b}^{2} \\
& \\
& =-2 \mathrm{a}^{2}-2 \mathrm{~b}^{2} \\
& \Rightarrow \frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}=-2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \\
& \therefore \frac{1}{\mathrm{a}^{2}+\mathrm{b}^{2}}\left(\frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}\right)=-2
\end{aligned}
$$

25. (C) We have,

$$
\begin{aligned}
& |x|^{2}-5|x|+6=0 \\
& \text { Let }|x|=y \\
& \Rightarrow y^{2}-5 y+6=0 \\
& \Rightarrow(y-2)(y-3)=0 \\
& \Rightarrow y=2,3 \\
& \Rightarrow|x|=2 \text { or }|x|=3 \\
& \Rightarrow x= \pm 2 \text { or } \pm 3
\end{aligned}
$$

\therefore Number of real roots are 4 .

PHYSICS

26. (B) Let T be the time of ascent and H be the total height. Then $T=u / g$

And $H=u T-\frac{1}{2} g T^{2}$
Let $(T-t)$ be the time taken by the ball to go from A to C. The distance covered in time $(T-t)$ is
$x=\mathrm{u}(\mathrm{T}-\mathrm{t})-\frac{1}{2} \mathrm{~g}(\mathrm{~T}-\mathrm{t})^{2}$
So, distance covered by ball in last t seconds.

$$
\begin{aligned}
& \mathrm{h}=\mathrm{H}-x=\left[\mathrm{uT}-\frac{1}{2} \mathrm{~g} \mathrm{~T}^{2}\right] \\
& -\left[\mathrm{u}(\mathrm{~T}-\mathrm{t})-\frac{1}{2} \mathrm{~g}(\mathrm{~T}-\mathrm{t})^{2}\right] \\
& =\mathrm{ut}-\mathrm{gt} \mathrm{~T}+\frac{1}{2} \mathrm{gt}^{2}=\frac{1}{2} \mathrm{gt}^{2}[\because \mathrm{~T}=\mathrm{u} / \mathrm{g}]
\end{aligned}
$$

27. (B) It is clear from the figure given below, the equation of motion of 8 kg block is
$8 \times a=T_{2}-8 g$
$\mathrm{T}_{2}=8 \mathrm{a}+8 \mathrm{~g}=8(\mathrm{a}+\mathrm{g})$
$=8 \times(2.2+9.8)=96 \mathrm{~N}$

The equation of motion of 12 kg block is
$12 \times \mathrm{a}=\mathrm{T}_{1}-12 \mathrm{~g}-\mathrm{T}_{2}$
$\mathrm{T}_{1}=12(\mathrm{a}+\mathrm{g})+\mathrm{T}_{2}$
$=12(2.2+9.8)+96=240 \mathrm{~N}$.
28. (D) We know, elongation in wire $(\Delta L)=\frac{F L}{A Y}$
or $\mathrm{F}=\frac{\mathrm{AY} \Delta \mathrm{L}}{\mathrm{L}}(\because \mathrm{F}=$ normal force $)$
Given:
Material of both wires is same $\therefore Y_{A}=Y_{B}$ Elongation in both wires A and B are equal
$\therefore \Delta \mathrm{L}_{\mathrm{A}}=\Delta \mathrm{L}_{\mathrm{B}}$
So, $F \propto \frac{A}{L}$
$\frac{F_{A}}{F_{B}}=\frac{A_{A}}{L_{A}} \times \frac{L_{B}}{A_{B}}$ But $\frac{A_{A}}{A_{B}}=\frac{\pi r_{A}^{2}}{\pi r_{B}^{2}}=\frac{r_{A}^{2}}{r_{B}}$
$\frac{\mathrm{F}_{\mathrm{A}}}{\mathrm{F}_{\mathrm{B}}}=\frac{\mathrm{r}_{\mathrm{A}}^{2}}{\mathrm{r}_{\mathrm{B}}^{2}} \times \frac{\mathrm{L}_{\mathrm{B}}}{\mathrm{L}_{\mathrm{B}}}=(2)^{2} \times \frac{1}{4}=1$
$\left[\because \frac{r_{A}}{r_{B}}=\frac{2}{1}\right.$ and $\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{L}_{\mathrm{B}}}=\frac{4}{1}$ (given) $]$
29. (A) $K=\frac{r_{1}^{2}+r_{2}^{2}+\ldots \ldots . .}{n}$, radius of gyration depends on the distribution of mass about the axis of rotation and it is independent of mass of the body.
30. (D) Arial Magnification $=\frac{\text { Area of image }}{\text { Area of object }}$ $=1.55 / 1.75 \times 10^{4}=8857$

Linear Magnification $=\sqrt{8857}=94.11$
31. (A) The resultant of three vectors cannot be zero if one vector does not lie in between the sum and difference value of the two other vectors.

One force must lie in between the sum and difference of two other forces.
32. (C) Let x be the distance of point from the moon where, the gravitational field intensity is zero. The distance of point from the earth $=(60 \mathrm{R}-x)$.

So, $\frac{G(M / 81)}{x^{2}}=\frac{G M}{(60 R-x)^{2}}$
or $\frac{1}{9 x}=\frac{1}{60 \mathrm{R}-x}$
or $60 \mathrm{R}=10 x$ or $x=6 \mathrm{R}$
33. (D) Here, $R=2.8 / 2=1.4 \mathrm{~mm}=0.14 \mathrm{~cm}$;
$\frac{4}{3} \pi R^{3}=125 \times \frac{4}{3} \pi r^{3}$
or $r^{2}=R / 5=0.14 / 5=0.028 \mathrm{~cm}$.
Change in energy $=$ S.T. \times increase in area
$=75 \times\left[125 \times 4 \pi r^{2}-4 \pi R^{2}\right]$
$=75 \times 4 \pi \times\left[125 \times(0.028)^{2}-(0.14)^{2}\right]$
$=74$ erg
34. (B) As water enters into the vessel A, it becomes heavier. Gravity helps it to sink. External work required for immersing A is obviously less than that for immersing B.
35. (D) When difference in temps. of a liquid and the surroundings is small $\left(\approx 30^{\circ} \mathrm{C}\right)$, then
$-\frac{d Q}{d t} \alpha\left(\theta-\theta_{0}\right)$
For numerical problems, when a body cools from θ_{1} to θ_{2} in time t, then
$\frac{\theta_{1}-\theta_{2}}{\mathrm{t}}=\alpha\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]$
According to Newton's law of cooling, rate of cooling \propto temp. diff. between the liquid and surroundings. As temp. diff. decreases gradually, time taken to cool increases i.e. $T_{3}>T_{2}>T_{1}$ or $T_{1}<T_{2}<T_{3}$
36. (D) Given, $x=0.20 \mathrm{~m} ; y=0.20 \mathrm{~m}, \mathrm{u}=1.8 \mathrm{~m} / \mathrm{s}$.

Let the ball strike the nth step of stairs.
Vertical distance travelled
$=\mathrm{n} y=\mathrm{n} \times 0.20=\frac{1}{2} \mathrm{gt}^{2}$
Horizontal distance travelled $=\mathrm{n} x=$ ut or $\mathrm{t}=\mathrm{n} x / \mathrm{u}$
$\therefore \mathrm{n} y=\frac{1}{2} \mathrm{~g} \times \frac{\mathrm{n}^{2} x^{2}}{\mathrm{u}^{2}}$
or

$$
\mathrm{n}=\frac{2 \mathrm{u}^{2}}{\mathrm{~g}} \frac{y}{x^{2}}=\frac{2 \times(1.8)^{2} \times 0.20}{9.8 \times(0.20)^{2}}=3.3 \approx 4
$$

37. (B) $v_{\mathrm{e}}=\sqrt{2 \mathrm{GM} / R}$ i.e. $v_{\mathrm{e}} \alpha 1 / \sqrt{\mathrm{R}}$
$\therefore \quad \frac{v_{\mathrm{e}_{1}}}{v_{\mathrm{e}_{2}}}=\sqrt{\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}}$ or $\frac{1}{100}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
or $\quad R_{2}=\frac{R_{1}}{100}=\frac{6400}{100}=64 \mathrm{~km}$
38. (D) Under isothermal conditions, $\mathrm{T}=$ constant.
$\therefore \quad$ Internal energy $=$ constant i.e. change in internal energy is zero.
39. (C) Energy does not have the units of kg-m/ sec.

Unit of energy is joule.
40. (A) $v=1.5 \mathrm{~m} / \mathrm{s}, \frac{\mathrm{dm}}{\mathrm{dt}}=5 \mathrm{~kg} / \mathrm{s}$
$\mathrm{F}=\frac{\mathrm{dm}}{\mathrm{dt}} \times v=5 \times 1.5=7.5 \mathrm{~N}$
$\mathrm{P}=\mathrm{F} \times v=7.5 \times 1.5=11.25 \mathrm{~W}$

CHEMISTRY

41. (A) The number of electrons in $\mathrm{Na}^{+}=11-1$ = 10

The number of electrons in $\mathrm{Ne}=10$
The number of electrons in $\mathrm{K}^{+}=19-1=$ 18

The number of electrons in $\mathrm{O}=8$
Thus, Na^{+}and Ne are isoelectronic with one another.
42. (B) $\quad P_{1}=1.00 \mathrm{~atm} \quad P_{2}=0.80 \mathrm{~atm}$
$\mathrm{V}_{1}=175 \mathrm{~L} \quad \mathrm{~V}_{2}=$?
As temperature remains constant, hence $P_{1} V_{1}=P_{2} V_{2}$ (Boyle's law)
$V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{1 \mathrm{~atm} \times 175 \mathrm{~L}}{0.80 \mathrm{~atm}}=218.75 \mathrm{~L}$
43. (D) For coordinate bond formation, there should be a lone pair of electrons which the H_{2} molecule does not have.
44. (C) KI_{3} and CuSO_{4} give 2 ions whereas $\mathrm{K}_{2} \mathrm{HgI}_{4}$ gives 3 ions. FeCl_{3} gives 4 ions.
45. (C) Mass of $\mathrm{NaNO}_{3}=0.38 \mathrm{~g}$

Volume of the solution $=50.0 \mathrm{~mL}$
Molar mass of $\mathrm{NaNO}_{3}=23 \mathrm{~g} / \mathrm{mol}+14$ $\mathrm{g} / \mathrm{mol}+3 \times 16 \mathrm{~g} / \mathrm{mol}$
$=(23+14+48) \mathrm{g} / \mathrm{mol}=85 \mathrm{~g} / \mathrm{mol}$
Amount of NaNO_{3} dissolved
$=\frac{0.38 \mathrm{~g}}{85 \mathrm{~g} / \mathrm{mol}}=4.47 \times 10^{-3} \mathrm{~mol}$
Molarity of the solution
$=\frac{4.47 \times 10^{-3} \mathrm{~mol}}{50.0 \mathrm{~mL}} \times 1000 \mathrm{~mL} / \mathrm{L}$
$=0.089 \mathrm{~mol} \mathrm{~L}^{-1}$
46. (A) B.O. in $N_{2}=(10-4) / 2=3$
B.O. in $\mathrm{O}_{2}^{2+}=(10-4) / 2=3$
B.O. in $\mathrm{O}_{2}^{-}=(10-5) / 2=2.5$
B.O. in $\mathrm{N}_{2}^{-}=(10-5) / 2=2.5$
B.O. in $\mathrm{O}_{2}=(10-6) / 2=2$
B.O. in $\mathrm{O}_{2}^{+}=(10-5) / 2=2.5$

Thus, N_{2} and O_{2}^{2+} have identical bond order of 3.0
47. (D)
(a) O.N. of $\mathrm{Cl}^{-}=-1$
(b) O.N. of Cl in $\mathrm{ClO}^{-}=x-2=-1$ or $x=+1$
(c) $\mathrm{O} . \mathrm{N}$. of Cl in $\mathrm{ClO}_{2}^{-}=x+2 \times(-2)=-1$ or $x=+3$
(d) $\quad \mathrm{O} . \mathrm{N}$. of Cl in $\mathrm{ClO}_{3}^{-}=x+3 \times(-2)=-1$ or $x=+5$
48. (D) One electron in the outermost shell of the given group 1 elements causes them to have similar properties.
49. (B) Ethyl alcohol undergoes combustion according to the reaction,
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-1367 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Then $\Delta_{c} \mathrm{H}=\sum \mathrm{aH}_{\text {products }}-\sum \mathrm{bH}_{\text {reactants }}$
Since, the enthalpy of a compound is taken as equal to its heat of formation, and the enthalpy of an element is taken as zero, we can write,
$-1367=\left[2 \Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{CO}_{2}\right)+3 \Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\left[\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)+0\right]$
Therefore, $\Delta_{\mathrm{f}} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=2(-393.4)+$ $3(-285.9)+1367=-277.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
50. (B) Element Y belongs to group 14 of the periodic table which forms two chlorides YCl_{4} (a colourless, volatile liquid) and YCl_{2} (a colourless solid).
51. (B) Reaction is reversed. $K=1 / 0.6=1.67$.
52. (B) $\mathrm{CH}_{2} \mathrm{~N}_{2}$ is called diazomethane (diazo + methane).
53. (B) Electronic configuration of $Z=105$, $\mathrm{n}+l=8$, for $5 \mathrm{f}=(5+3)=8$ and for
$6 d=(6+2)=8$ and electrons present in $5 f=14$
and electrons present in $6 d=3$,
Thus, total no. of electrons $=14+3=17$
54. (C) Gases do not have any definite volume. Liquids have definite volume.
55. (A)
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}_{1}=-x \mathrm{~kJ}$
$\mathrm{CH}_{3} \mathrm{OH}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}_{2}=-y \mathrm{~kJ}$
Subtracting (ii) from (i), we get
$\mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}, \Delta \mathrm{H}_{3}=-$ ve
i.e., $-x-(-y)=-$ ve
$y-x=-\mathrm{ve}$
Hence, $x>y$.

CRITICAL THINKING

56. (D)

57. (A) Data in Statement I alone is sufficient to answer the question, while the data in Statement II alone is not sufficient to answer the question.
58. (D) If both I and II are implicit
59. (B)

60. (C) Since the weight is 10 Kg and there are 4 sections of rope supporting it, then by dividing 10 by 4 , you will get 2.5 Kg . In all cases, just divide the weight by the number of sections of rope supporting it to get the force needed to lift the weight.
